医学生物物理学

核磁共振

NMR 基本原理

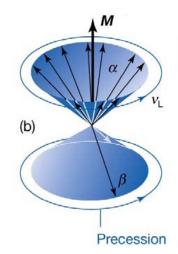
● I: 自旋量子数

描述原子核固有的自旋角动量,质子和中子的自旋角动量之和

奇原子量	I=1/2
偶原子量+偶电荷数	I=0
偶原子量+奇电荷数	l=整数

核磁共振设备只能检测到 I=1/2 的原子核信号;I=0,无核磁信号;I=整数,有核磁信号,但是难以检测到

生物体中常见的大量元素中只有 ^{1}H 是奇原子量,因此一般核磁共振都是氢谱;其他同位素比如 ^{13}C 也能做核磁


● m_l: 磁量子数

描述自选量子数在 z 方向上的投影,反应核自旋角动量的空间取向,有(2I+1)个取值 对于 1 H,I=1/2, m_{i} = \pm 1/2

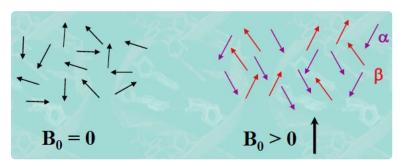
● 核磁矩

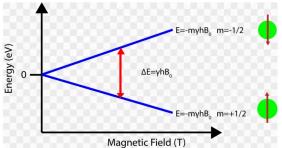
原子核带电且自旋——产生核磁矩μ

在外加磁场的作用下,磁矩μ最终表现(净磁矩)在 z 轴(外加磁场 M 的方向)上,垂直方向上的分量抵消了

Properties	of	Selected	Nuclei ^a
------------	----	----------	---------------------

Nucleus	1	γ (rad . T ⁻¹ . s ⁻¹)	Natural abundance (%)
¹ H	1/2	2.6752 × 10 ⁸	99.98
2 H	1	4.107×10^{7}	0.02
13C	1/2	6.728×10^{7}	1.11
14N	1	1.934×10^{7}	99.64
15N	1/2	-2.712×10^{7}	0.36
¹⁷ O	ş	-3.628×10^{7}	0.04
¹⁹ F	1/2	2.5181×10^{8}	100.00
²³ Na	3	7.080×10^{7}	100.00
31 P	1/2	1.0841×10^{8}	100.00
113 Cd	1/2	5.934×10^{7}	12.26


磁矩、进动(类似于陀螺的 运动)


v是一种原子核的固有性质

$$μ_z = \frac{\gamma m_l h}{2\pi}$$
 (h 为普朗克常数,γ为旋磁比 rad • T $^{-1}$ • s $^{-1}$ 因原子核不同而不同)

塞曼效应

当原子核被置于外加磁场时,所有核磁矩顺或逆着外加磁场方向,宏观总磁矩分裂为 2I+1 个能 级

每个能级的能量:
$$E = -\mu_Z B_0 = -\frac{\gamma m_I h B_0}{2\pi}$$

当 I=1/2 时, $m_I=\pm 1/2$,二分裂的两能级之间的能量差: $\Delta E=-\frac{\gamma h B_0}{2\pi}$

$$\Delta E = -\frac{\gamma h B_0}{2\pi}$$

拉莫尔频率

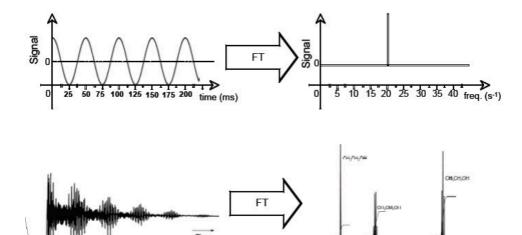
能级:跃迁→驰豫

跃迁过程:给予电磁脉冲(光子)可以实现塞曼效应下的核量子态跃迁,光子频率 μ,有

$$hv = \Delta E = \frac{\gamma h B_0}{2\pi}$$
,因此 $v = \frac{\gamma B_0}{2\pi}$ (拉莫尔频率)取决于旋磁比和外加磁场强度(ps:

脉冲信号是方波信号)

弛豫: 电磁脉冲后核自旋回到热平衡态的过程。在弛豫过程中,受激发核会使射频线圈产生感应电流,并随时间衰减至零,该时间被称为自由感应衰减(FID)

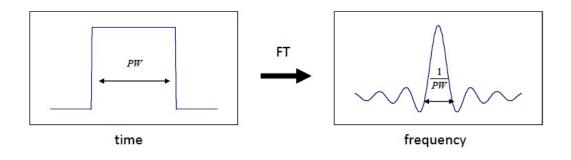

实际上检测的核磁信号就是 FID, 自由感应衰减

● 傅里叶变换

任意周期函数都可以分解成振幅不同、频率递增的正弦函数之和

振幅——权重,贡献 contribution

对于复杂周期函数而言,时域信号重复且无规则,我们分析信号需要的数据是该函数可以分解成的正弦函数的组成(频率)、每种频率的振幅(权重)。由此,傅里叶变换(FT,Fourier Transform)应运而生

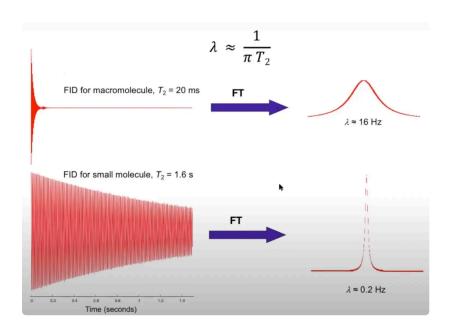


时域: x 轴为时间、y 轴为信号强度

频域: x 轴为频率、y 轴为信号强度(振幅)

频域信号的优点:信号种类组成和贡献度大小一目了然(频率和振幅)

对 NMR 的脉冲信号(时域)做傅里叶变换 \longrightarrow sinc function: $f(x) = \frac{\sin \pi x}{\pi x}$



频域信号中,"中央明纹"信号远强于其他频段信号,意味着时域中的方波信号几乎只代表着频域中"中央明纹"处的那部分频率

为了让尽可能多种原子核被激发(不同环境的 1 H、 13 C等),希望中央明纹宽,因此需要脉冲信号 2 而强,PW 小

• 弛豫时间

弛豫时间**T**决定核磁谱分辨率

λ越小,峰窄且强 → 分辨率高

样品分子量越大,T越小, λ 越大;样品分子量越小,T越大, λ 越小

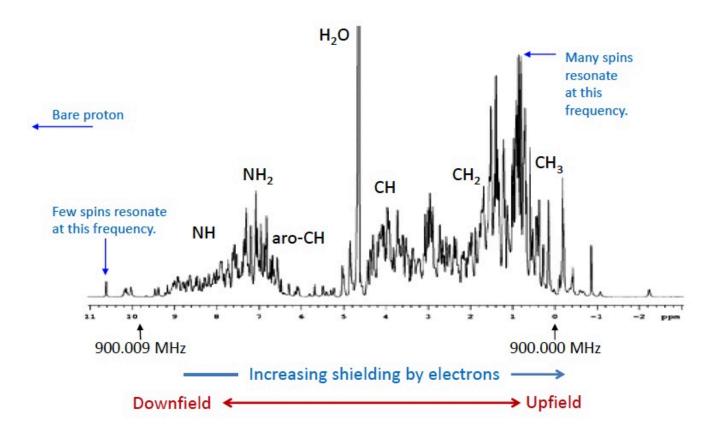
→核磁共振只能测小分子化合物

NMR 设备情况

NMR工作频率: ¹H 核在其场强下的拉莫尔频率 V

这是NMR设备最重要的参数,工作频率越高,灵敏度、分辨率越高

仪器价格随之越高,电磁脉冲的保护措施相应提高


一维¹H NMR

化学位移 δ

零点定义:将四甲基硅烷 TMS 的化学位移定义为 0(四甲基硅烷的电子密度高,实测出的拉莫尔频率是相对而言最小的)

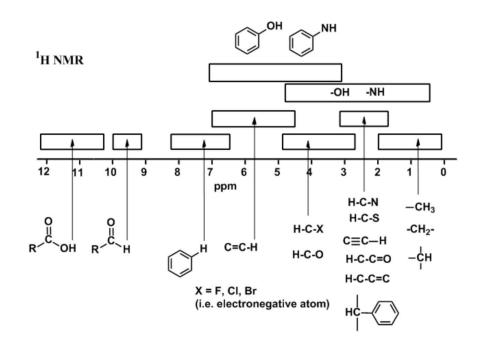
定义式:
$$\delta = \frac{v_{sample} - v_{TMS}}{v_{NMR}} \times 10^6$$
 (parts per million/**ppm**)

显然 $\delta_{TMS} = 0$

注: 1. 零点靠右 2. 右边是高场,左边是低场(这意味着化学位移越大越是低场) 3. 高场意味 着电子密度大

● 影响化学位移的因素

同种同位素化学位移一样? 并不是


实测化学位移(拉莫尔频率)会受到原子核化学环境影响,包括<mark>电子屏蔽、标量耦合、偶极耦合</mark>

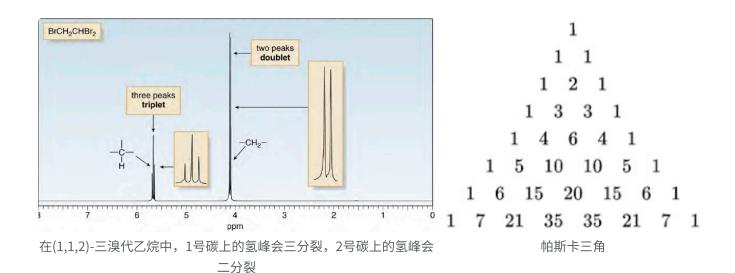
电子屏蔽(化学位移的主要影响因素)

电子运动产生的磁场会抵消外加磁场

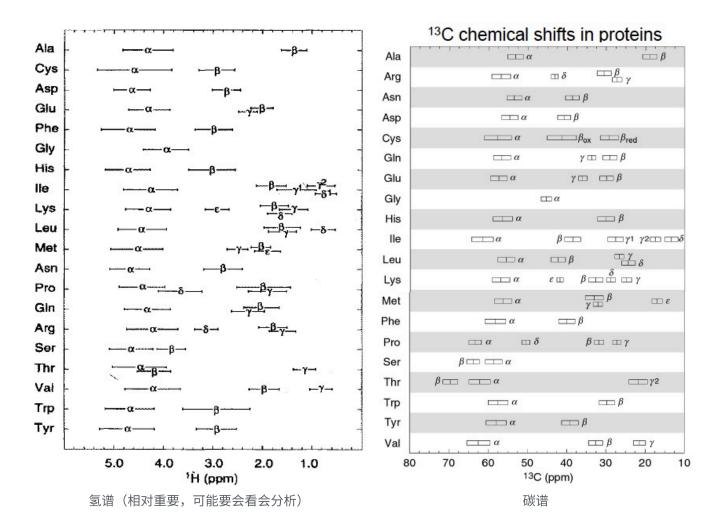
电子密度	电子屏蔽	化学位移
高	高	δ小,NMR谱线右移

影响 H 原子电子密度主要因素:诱导效应

注:苯环上氢是个例外,因为苯环形成电子环路进而感生磁场,在苯环外侧加强外加磁场,导致化学位移更高


● ¹H 核磁峰的积分面积代表了地位等同的 ¹H 原子数比例

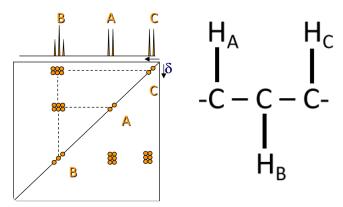
由于一般峰很窄,积分面积也可由峰高度等效


● ¹H 核磁峰的分裂

 ${}^{1}H$ 峰的分裂数 = 相邻碳氢原子数量 +1

¹H 峰分裂后没格子风的高度符合帕斯卡三角规律

● 氨基酸的核磁谱

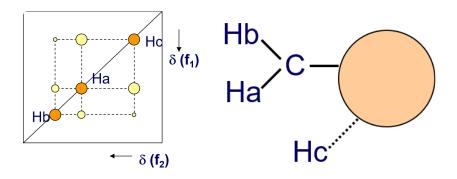

二维 NMR

由于蛋白质等生物大分子太过复杂,仅凭一维NMR不足以确定结构,因此引入另外两个参数

COSY与NOESY

COSY: Correlated SpectroscopY

标量耦合:三个以内共价键的耦合(相邻的C、O、N上的H才会在三键以内)



坐标轴绕右上角逆时针旋转 90°,这张图显示,BC、BA 间有COSY信号,意味着他们 在三键以内

二维 NMR-COSY 图沿对角线对称,图中一共有两种信号:自我耦合、三键之内耦合,自我耦合的信号都会在对角线上。

NORSY: Nuclear Overhauser Effect Spectroscopy

偶极耦合:空间上相近的同种原子核(比如说 H)相互干扰,信号强度 $\propto \frac{1}{r^6}$,且 $r \leq 6$ Å

蛋白质结构与 COSY、NOESY 谱

对角峰:每个氢原子对应一种对角峰

 \mathbf{COSY} 交叉峰: $C^aH_{i,i}NH_{i}$ (同一氨基酸内交叉),形成的图案也被称为指纹谱

NOESY 交叉峰: NH_{i+1} , $C^{\alpha}H_i$ 、 NH_{i} , NH_{i+1} (不同氨基酸间交叉),与空间结构相关

COSY、NOESY 谱按对角线各取一半,即得到包含全部信息的二维 NMR 谱图